No | Text |
1 | A recap of deep q learning |
2 | The problem with deep q learning |
3 | An introduction to double q reinforcement learning |
4 | Tensorflow 2 metrics |
5 | Tensorflow 2 summaries |
6 | Tensorflow 2 metrics and summaries – cnn example |
7 | Tensorflow 2 keras metrics and summaries |
No | Text |
1 | Policy gradient reinforcement learning in tensorflow 2 |
2 | Policy gradients and their theoretical foundation |
3 | Finding the policy gradient |
4 | Calculating the policy gradient |
5 | Policy gradient reinforcement learning in tensorflow 2 and keras |
6 | Prioritised experience replay in deep q learning |
7 | Prioritised experience replay |
8 | ımplementing prioritised experience replay in tensorflow 2 |
9 | Prioritised experience replay atari space ınvader training results |
10 | Sumtree introduction in python |
11 | Weighted sampling and sorting |
12 | ıntroduction to the sumtree |
13 | The sumtree in python |
14 | Trying out the sumtree |
15 | Atari space ınvaders and dueling q rl in tensorflow 2 |
16 | Double and dueling q learning recap |
17 | Considerations for training in an atari environment |
18 | Atari space ınvaders tensorflow 2 implementation |
19 | Miscellaneous functions |
20 | The dueling q / double q training function |
21 | The main atari training loop |
22 | Space ınvader atari training results |
23 | Dueling q networks in tensorflow 2 |
24 | A recap of double q learning |
25 | Dueling q introduction |
26 | Dueling q network in tensorflow 2 |
27 | ıntroduction to resnet in tensorflow 2 |
28 | ıntroduction to the resnet architecture |
29 | Building resnet in tensorflow 2 |
30 | Resnet training and validation results |
31 | Double q reinforcement learning in tensorflow 2 |
32 | The double dqn network |
33 | A double q network example in tensorflow 2 |
34 | Double q results for a deterministic case |
35 | Double q results for a stochastic case |
36 | Transfer learning in tensorflow 2 tutorial |
37 | What are the benefits of transfer learning? |
38 | How to create a transfer learning model |
39 | Transfer learning in tensorflow 2 |
40 | An introduction to global average pooling in convolutional neural networks |
41 | Global average pooling |
42 | Global average pooling with tensorflow 2 and cats vs dogs |
43 | Standard fully connected cla***ifier results |
44 | Global average pooling results |
45 | Metrics and summaries in tensorflow 2 |
No | Text |
1 | Eager to build deep learning systems in tensorflow 2? get the book here (14) |
2 | Prioritised experience replay in a double q setting |
3 | Drawing prioritised samples |
4 | ımportance sampling |
5 | Sampling and the sumtree data structure |
6 | Double q recap |
7 | Dueling q recap |
8 | Converting atari images to greyscale and reducing the image size |
9 | Stacking image frames |
10 | Model definition (2) |
11 | The memory cla*** |
12 | Other functions |
13 | The main dueling q training loop |
14 | Dueling q vs double q results |
15 | The degradation problem |
16 | The resnet solution |
17 | Eager to build deep learning systems? get the book here (6) |
18 | A smaller cnn model |
19 | Resnet50 transfer learning example |
20 | Comparing the models |
No | Text |
1 | here (20) |
2 | Advantage function A(s, a): |
3 | Value function V(s): |
4 | It speeds up learning |
5 | It needs less data: |
6 | You can leverage the expert tuning of state-of-the-art models |
7 | training |
No | Text |
1 | a (14) |
2 | s (12) |
3 | policy |
4 | directly. |
5 | Policy Gradient |
6 | expected |
7 | x (7) |
8 | trajectory |
9 | T (3) |
10 | given |
11 | log |
12 | total length of the episode |
13 | all subsequent states |
14 | full episode |
15 | output (3) |
16 | reduce_sum |
17 | . |
18 | network, |
19 | discounted_rewards |
20 | target (9) |
21 | rewards (2) |
22 | rewards[::-1] |
23 | for (5) |
24 | (discounted_rewards.reverse()). |
25 | train_on_batch (5) |
26 | done (2) |
27 | network (3) |
28 | update_network (2) |
29 | train_writer |
30 | experience replay |
31 | Prioritised Experience Replay (PER) |
32 | uniformly |
33 | should be |
34 | i. |
35 | primary network |
36 | i |
37 | expected value |
38 | skewing or biasing |
39 | importance sampling |
40 | N |
41 | size |
42 | curr_write_idx |
43 | update (4) |
44 | adjust_priority |
45 | available_samples |
46 | num_samples |
47 | is_weights |
48 | states (4) |
49 | next_states (4) |
50 | error |
51 | get_per_error (2) |
52 | append |
53 | all |
54 | value (14) |
55 | value = |
56 | left, right |
57 | parent (2) |
58 | left (2) |
59 | right (2) |
60 | create_leaf (2) |
61 | is_leaf |
62 | True |
63 | leaf_nodes |
64 | nodes (5) |
65 | next() |
66 | pair |
67 | next node |
68 | (node_1, node_2 |
69 | (node_3, node_4 |
70 | ) |
71 | node_1, node_2 |
72 | node_1 |
73 | node_2 |
74 | while len(nodes) > 1 |
75 | nodes[0] |
76 | node |
77 | node.left.value |
78 | change (3) |
79 | propagate_changes |
80 | itself |
81 | does |
82 | input |
83 | create_tree |
84 | root_node (3) |
85 | tree_total |
86 | retrieve |
87 | max |
88 | primary (2) |
89 | argmax (3) |
90 | identifiability |
91 | hard |
92 | direction |
93 | call (4) |
94 | max_memory (2) |
95 | self._i (3) |
96 | rand_idxs |
97 | idx – 1 – NUM_FRAMES |
98 | idx – 1 |
99 | idx – 1. |
100 | idx |
101 | choose_action |
102 | epsilon-greedy |
103 | eps, |
104 | train (4) |
105 | prim_qt (7) |
106 | prim_qtp1 |
107 | qtp1 |
108 | t + 1 (2) |
109 | updates (2) |
110 | valid_idxs (2) |
111 | target_network (5) |
112 | N(2, 1). |
113 | b (6) |
114 | N(1, 4) |
115 | a, b, |
116 | c. |
117 | b. |
118 | c (2) |
119 | t (2) |
120 | target network (2) |
121 | advantage |
122 | s*, |
123 | n (2) |
124 | dueling |
125 | dense1 |
126 | dense2 |
127 | adv_dense |
128 | adv_out (2) |
129 | (adv_out). |
130 | num_actions |
131 | v_dense |
132 | lambda x: x – tf.reduce_mean(x) |
133 | combined |
134 | primary_network (2) |
135 | degradation |
136 | not |
137 | training |
138 | and training |
139 | H(x) (3) |
140 | at least |
141 | at worst, |
142 | pa*** through (3) |
143 | make things worse |
144 | option |
145 | F(x) (4) |
146 | F(x) + x |
147 | incremental |
148 | Res |
149 | res_net_block |
150 | r (3) |
151 | E[r]. |
152 | biased |
153 | A (4) |
154 | E[r] |
155 | Ra |
156 | np.zeros() |
157 | Rc (2) |
158 | Rd (2) |
159 | max_result |
160 | and |
161 | choice |
162 | evaluation (2) |
163 | a* (2) |
164 | extracted from network B |
165 | actions |
166 | num_episodes |
167 | choose_network |
168 | env.step() |
169 | double_q (2) |
170 | while |
171 | next_state (4) |
172 | target_q (5) |
173 | batch_idxs, |
174 | arange |
175 | q_from_target (2) |
176 | transfer learning |
177 | tensorflow_datasets (3) |
178 | tfds.load() (2) |
179 | info (2) |
180 | cat_train, cat_valid and cat_test |
181 | tf.image.resize (2) |
182 | tf.float32 (2) |
183 | tf.keras.applications |
184 | weights |
185 | include_top |
186 | tl_model.summary() |
187 | somewhere, |
188 | fit (4) |
189 | update_state() (3) |
190 | result() (4) |
191 | reset_states() (2) |
192 | with (4) |
193 | step |
194 | iterations |
195 | avg_loss |
196 | avg_acc |
197 | spa**** |
198 | log_freq |
199 | epoch |
200 | summary_writer.as_default() |
201 | compile |
202 | keras.layers.Layer |
203 | layer_to_log.variables[0] |
No | Text |
1 | s, independent |
2 | F(x) = H(x) – x. |
3 | while True |
4 | target_q |
Icon | Domain | IP | Alexa Rank |
Monstermikeschultz.com | ![]() |
3.100.205 | |
Myjearney.com | ![]() |
114.233 | |
Almokawil.com | ![]() |
329.713 | |
Xdarom.com | ![]() |
111.756 | |
Jawabe.com | ![]() |
305.542 | |
Midnightboats.com | ![]() |
1.265.116 | |
Technologyocean.com | ![]() |
222.825 | |
Wowschdeule.com | ![]() |
1.774.547 | |
Fusionqatar.com | ![]() |
1.308.101 | |
Ofcourseme.com | ![]() |
1.249.263 | |
Greenandgoldcleaning.com | ![]() |
557.100 | |
Collectiveconsciousness.com | ![]() |
4.151.151 | |
Integrothemes.com | ![]() |
254.325 | |
Loidich.com | ![]() |
761.358 | |
Thebiznews.org | ![]() |
620.842 | |
Picklaptop.com | ![]() |
571.065 | |
Stepsforahealthylife.com | ![]() |
2.679.782 | |
Thegutzlife.com | ![]() |
54.446 | |
Wpclam.com | ![]() |
1.026.110 | |
Elirodrigues.com | ![]() |
616.926 | |
E-Marketinglovers.com | ![]() |
176.262 | |
Roadmasterinc.com | ![]() |
820.991 | |
Smart-Techno.net | ![]() |
183.877 | |
Health-Beautyclub.com | ![]() |
936.076 | |
Political-Encyclopedia.org | ![]() |
277.595 | |
Iviews.club | ![]() |
200.270 | |
Viralteambuildersystem.com | ![]() |
440.309 | |
Threadsmonthly.com | ![]() |
811.439 | |
Webtechpreneur.com | ![]() |
116.679 | |
Cerdasco.com | ![]() |
165.839 | |
Vabizsolutions.com | ![]() |
2.075.622 | |
Yusiko.az | ![]() |
3.629.114 | |
Goodfood101.com | ![]() |
747.710 | |
Dreamstodiscover.com | ![]() |
817.260 | |
Quranhifzpen.com | ![]() |
5.252.213 | |
Asimot.com | ![]() |
4.061.171 | |
Zectronicss.com | ![]() |
822.085 | |
Oskarhallgrimsson.com | ![]() |
563.788 | |
Amrak-Ku.com | ![]() |
257.271 | |
Affinteractive.com | ![]() |
116.208 | |
Xbytesangola.com | ![]() |
24.654 | |
Dappertappermagazine.com | ![]() |
277.118 | |
Brightmil.com | ![]() |
1.799.358 | |
Sellerinsiders.com | ![]() |
157.483 | |
Jobnow.ng | ![]() |
112.001 | |
Schoolofchrist.tv | ![]() |
617.292 | |
Theshortordercook.com | ![]() |
37.074 | |
Mercytohumanity.org.uk | ![]() |
216.712 | |
Codedirection.com | ![]() |
5.242.933 | |
Jesschatenay.com | ![]() |
3.297.552 |